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ABSTRACT

Possible reasons for the misinterpretation of non-isothermal kinetics are
discussed. The importance of the correct selection for the assessment of the progress
of the reaction and the acquisition of representative experimental data, as well as the
effect of non-isothermal conditions and possible change of the equiiibrium on the
kinetic equation are stressed. Detailed attention is given to the probable mechanisms
of individual cases of solid-state reactions as expressed in integral and/or differential
forms of kinetic equations. Reactions controlled by the movement of phase boundaries,
by simple nucleation. by nucleation followed by nuclei growth and by diffusion are
discussed; a combined form of differential equation suggested for the preliminary
appraisal of possible mechanisms is

é = ka™(1 —x)"(—In(1 —x))®
dt
INTRODUCTION

The study of reaction kinetics in the solid state (and/or liquids) i1s mainly
designed to gain information about the kinetic parameters and associated mecha-
nisms of the process. In dynamic experiments with increasing temperature!~*

dT _T-T,

—=¢ and 1
dt b

1)

where @ is the linear heating rate and T, the temperature of the equilibrium of
conversion®, the calculation of kinetic parameters is often simplified and may be
based on the assumption that the course of the reaction can be described by the
differential equation

2 _ D@ @
dt

where z is the degree of conversion, d«/dt the rate of reaction, k'( T) the temperature
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dependent rate constant and f(x) a function* which represents the hypothetical
mcdel of the reaction mechanism. Apart from direct investigational methods®-3%-33,
mathematical models based on hypothetical reaction mechanisms may be
US€d7's'33—53.

The correlation between the reacted fraction (x) and time of reaction (¢) is
usually derived for isothermal studies and the variables are given in a complex form

x =f(I/’ N, 0’ r, p, I "')T:ccns!- (3)

where
V = reacting volume of material
N = number of nuclei (or spots available for nucleation)
0 = specific surface
r = geometric factor of particles (radius erc.)
p = partial pressure of the gaseous products

POSSIBLE SOURCES OF ERRORS AND MISINTERPRETATIONS IN NON-ISOTHERMAL KINETICS

a. Selection of a correct expression for the degree of reaction

Contrary to gases (or liquids), concentration is not a valid representative
parameter for solid-state processes as it may vary through the sample?®. Therefore,
a nondimensional term, degree of conversion a, should be introduced.

The problem is, in what sense is the value of x a linear function of the physical
property measured® and how does it represent the state of the system investigated.
in basic thermoanalytical methods, such as thermogravimetry (and dilatometry) this
function is defined as

2o ViVo _ W, @
V.-V, W,

where ¥ and W are weight (volume) and weight loss (volume contraction) of the

sample, and indexes 0, r and oo indicate initial, instantancous and final stages,

respectively. Differential thermal analysis is still of questionable validity?! because

a representative value which would unambigously define the change in the system

from the initial or from the final state is not yet availaole from a DTA peak.

b. Selection of the experimental condition for a representative experimental process
model

All variable factors describing experimental conditions, such as grain size
distribution, sample packing and geometry as well as the effect of dynamic environ-

*ffx) is frequently oversimplified as (1 —z)* or 2™ assuming analogy with homogeneous kinetics of
gases'=*, and sctting n and m as orders of rcaction. This simplification has, however, no general
validity for solid-state reactions® but as an approximation it may be used to investigate the variation
of apparent activaticn energy under different experimental conditions??.
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ment and vacuum, should be defined in terms of the equilibrium of the process6 and
be included in the function f(x) if they alter the reaction mechanism. Temperature
deviation from a chosen temperature increase (e.g. due to heat of reaction in the
sample!*3%) should be minimized. Uniform and programmed temperature throughout
the sample body is required for the successful kinetic investigation of solid state
reactions’. Heat and mass transport should be facilitated as much as possible by a
suitable experimental arrangement, unless they are true and valid rate controlling
processes.

Two possible approaches when investigating solid-state processes can be
distinguished. The physicochemical approach’ is to separate and stress that process
usually associated with the re-arrangement of molecules and ions when forming a
new phase. Specially developed experimental conditions are applied (e.g. thin layers
of solid samples in good contact with large heat reservoirs') in order to obtain
information about the nature of physical and/or chemical changes. On the other hand,
the engineering approach’’ is used to analyse the experiments (employing large
solid samples with well defined otiter geometry) in terms of thermal and concentration
gradients in order to obtain information about the practical application of the process.

c. Admitting a continuous change of 1he cquilibrium of the process during temperature
increases
Contrary to the invariant processes, where the equilibrium state of the system
changes by a jump. in monovariant processes equilibrium can be a monotonous
function of temperature within the temperature interval of the reaction. Thereiore a
non-isothermal degree of conversion 7 should be introduced®

=i, (5)

where 7, is the propagation of the equilibrium. The ordinary rate of reaction dx/dz
must then be replaced by the corrected rate of the process d&/dr°®

dé 'di dlIn Z,
@€ ( il ¢),f.¢q ©

Thus it is necessary to establish the dependence® of i, on T.

d. Construction of a kinetic equation of solid-state reactions under non-isothermal
conditions
There are some doubts® '0-12:19:20 55 {0 the validity of the currently used
kinetic equation (Eqn. (2)) either when describing heterogeneous and/or solid-state
reactions or when considering the non-isothermal character of processes.
It is the total concept of the specified rate constant ((Eqn. (2)), frequently
expressed in the form of the Arrhenius equation,

k(T) = A exp(—E/RT) Q)
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which has been successfully employed and derived for homogeneous kinetics. A is the
frequency factor proportional to the number of successful collisions of the reacting
molecules and E is the activation energy. Polanyi and Wigner>® attempted a quanti-
tative treatment of the rate of solid state reactions using A(7) (Egn. (7). They
assumed that the molecuvles which achieved the critical energy E could escape from
the reactant surface (here A is the atomic frequency of vibration).

Generally the exponential character of the rate constant*3~2° for solid state
reactions can be accepted, as all true solid state processes are activated processes’.
The rate constant represents the impedance which the process must overcome to
achieve the new thermodynamically favourable arrangement in the solid state. The
exponent represents the statistical probability for the energy barrier E to be surpassed
when the system undergoes an effort with sufficient activation energy (£). The pre-
exponential factor 4 can then be correlated with the number of successful attempts.
The missing term 7™ for multiplying 4 (where 0 < m < 1 is derived in different ways
depending on the theoretical application of k(7)) can be neglected when working in
nairow temperature intervals, and included in A (together with the initial weight and
the molecular weight of the sample).

For a particular analysis of solid state reactions as applied to the thermal
decomposition of carbonates, the activated complex theory has been employed??.
A in Egn. (7) is then proportional to the Maxwell distribution coefficient X7}k and
the ratio Q*/Q, where Q* and Q are complete partition functions for the activated
complex and reactant, respectively. The partition function can be expressed using the
partial partition function for translation, rotation and vibration for each unit of the
crystal Iattice undergoing the change, with regard to their possible activities. A good
agreement between experimentally calculated and numerically predicted rate constants
for various types of decompositions has been found?*.

A recent publication'® claims that the current state of knowledge of solid state
kinetics is inadequate?-32-%3_ New assumptions are made, namely that heterogeneous
rezctions are not activated processes (with no activation energy) and that the only rate
controlling process is heat exchange between the reacting mass and its surroundings.

Furthermore, it is suggested that the reaction can proceed only at a fixed
(reaction) temperature 7. given by the equilibrium of the process (where the free
enthalpy 4G = 0). The corrected rate constant is then found to be proportional to the
hearing rate, transfer of heat (heat conductivity) and to the reciprocal value of the
heat of reaction. Good agreement is found for several types of endothermic decom-
position?%-29,

The objection is, however, that in this case the physical property chosen
(e.g. weight) for measuring reaction advancement is controlled by a heat supply
corresponding to the instantaneous thermodynamical need for the interface reaction
equilibrium (7 at 4G = 0). This becomes true for specific conditions of voluminous
samples, where the progress of reaction is governed by the interface advancement
(or crystal growth in certain cases), as will be considered in the next section. In other
cases activated types of process which can proceed at temperatures higher than T
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can also be accepted (where 4G < 0), but ne proof is yet available for either of these
assumptions (by measuring and distinguishing whether the reaction proceeds at Ty
or above 73).

Another source of doubt is the time-temperature dependence of x under non-
isothermal conditions.

x = f(t, T(t)) (3)

In accordance with established mathematical rules for partial derivation, Egn. (8)
can be rewritten as

dx (.‘Eﬁ) + (f:i) 47 )
dt ot)r ¢t /o dt
Some authors!?-1? claim that the formal isothermal kinetic equation is valid in the
form

(ﬁ) = k(T) (=) (10)
t )T

-

contrary to the current formulation of Eqn. (2). Using pure mathematical operations,
the combination of Eqns. (9) and (10) results in the corrected non-isothermal rate
constant k’(7) in the form®

(1)

o 1 , T—Ty E)
k(T)-k(T)(l-r — R’)

This correction is calculated to give +350% in E for (T—7T,) <10 and E < 10%,
Although it is difficult to imagine the physical meaning of the change of the degree of
conversion with temperature when time is kept constant'?!, particularly when
temperature can change within a definite time interval, isochrones (¢# = const.) can be
drawn?®, This, in its way a mathematically correct approach needs more examination
as there is little experimental evidence as well as logical justification®.

There is still a confusing deviation in the activation energy values calculated
from data derived from the first part of experimental resuits of the process. If probable
experimental errors are neglected, the best mathematical approach seems to be the
appreciation of a correction for the proximity to equilibrium!?-'8

K'(T) = k(T)(1 —exp(—4G/RT)) (12)

where the change of free energy for the reaction (4G) approaches zero at the equili-
brium temperature T,(exp (—AG/RT,)— 1) and is unchanged for stages distant
from equilibrium (4G < 0).

This correction has a logical justification in the obvious ~activation energy ™ dia-
gram, AG vs. reaction travel, and can also be derived by means of irreversible thermo-
dynamics. The expression was originally derived for transformations passing through
the vapour phase!3, and satisfactorily applied to describe heterogeneous kinetics.
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It must be admitted that the theoretical concept of k' (T) for solid state reactions
studied under non-isothermal conditions is still not satisfactorily resolved, but it is
difficult to believe that a new concept will be introduced. The proportionality constant
(K= integral form, k= derivative form) in the next section will, however, be used
without a closely defined meaning.

e. Physical meaning of evaluated kinetic parameters

Many theories have been advanced?-3-21-22:38 ip order to give a true meaning
to the pre-exponential constant A (see Egn. (2)). Generally it can be said that 4 can
include manyv constants describing the initial state of the sample, such as three-
dimensional shape factors of initial particles, molecular mass, density, stoichiometric
factors of chemical reaction, active surface and number of lattice imperfections, elc.,
as well as factors arising from the surface adsorption of gas, and pressure.

The activation energy E can be understood only ia relation to the rate control-
ling processes. For example, in the case of diffusion. E can be associated with the
activation energy of intrinsic diffusion as well as for substitutional reactions. Pro-
portionality between 4(7) and the specific electronic conductivity can be established
by the activation energy of electrical conductivity. Also, for nucleation and crystal
growth the value of E is composed of activation energies of mass supply (diffusion)
and factors arising from the thermodynamical potential of nucleation and/or crystal
growth, efc.

f. Construction of a hypothetical mathematical description of the reaction mechanism

A formal equation in general use (simiiar to Eqn. (2)) and applicable to solid-
state reactions should represent the relation between dx/dr and a. It sometimes in-
cludes a term f(z) as well. This type of differential equation implies pure mathematical
fitting of experimental data and may be treated in two ways:

1. As a pure mathematical fitting of a polynom to the experimental curve, the
expression

f(1)=Ao+A1‘1+A212+ ''''' + A,*" (13)

is usually employed in computer calculations of mathematical derivations (process
rates)?83°, without considering the specific reaction mechanism. Also, the use of the
term “reaction order™? is included, having a certain physical and engineering
application.

2. By using a certain logical model to form the function f(x) in accordance
with the suggested reaction mechanism.

This equation includes the basic geometrical and physicochemical aspects of
processes. A detailed analysis of this problem for classifying final equations in a
simplified way is the aim of this article 2nd will be dealt with in the following section
(all thermodynamically directed aspects discussed in this section were given in detail
in a previous article “Kinetics with regard to the thermodynamics of processes
studied by use of non-isothermal techniques™?).
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MATHEMATICAL DESCRIPTION OF POSSIBLE MECHANISMS IN SOLID-STATE PROCESSES

The reaction mechanism can be expressed in two ways. The ordinary formula-
tion x vs. t as employed for basic isothermal concepts (see Eqn. (3))7~%,3275% is here
mathematically transferred into the relation dx/df vs. « in accordance with the
requirement given by the differential Eqn. (2)3-*-'°. The final and simplified forms
of formal kinetic equations are listed below for individual types of mechanism. The
left-hand side presents the equations frequently called the integrated form!5-!8 and
provided with function g(x). These functions '* '8 were satisfactorily employed in
the only known method for the estimation of reaction mechanisms from dynamic
TG traces by using monograms!7-18. The right-hand side gives the equivalent forms
of the function f(x).

a. Phase-boundary controlled processes
Surface nucleation takes place extremely rapidly and the total process is gover-
ned by movement of the resulting interface* towards the center’-3°,

A. One-dimensional movement (and some cases of evaporation)®?

x = Kt; ? = kx® = constant ¢E))
t

B. Two-dimensional movement (for cvlinder or prism)

1—(1—-2"? = Kt; % = k(1 —)*/? (15)

C. A sphere reacting from all surfaces inwards (three-dimensional movement)

1—(1—-2'"3 = Ki; ‘—:13: = k(1—-2)?*? (16)

b. Reactions controlled by nucleation

A. Nucleation according to the power law’-8

x= Kit?; 93 = ka™ (17)
dr

where m < 1 and p = 1, 2, 3, 4 according to the spherical symmetry3® of nuclei.

*Thke rate controlling process might be the chemical reaction on this interface as given by Egns. (14),
(15), (16) or the mass and/cr heat transport to or from this surface, such as diffusion or heat
cxchange!® as a special case of a non-activated process following the equation9:2°:
d ,
-1~ = Kg—1°
4H

This represents volatile products during the endothermal decomposition of a spherical sample
where K, is the linear constant and 4H is the heat of the reaction.

Thermockim. Acta, 3 (1971) 1-12
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B. Nucleation according to exponential law’-*°

z =1 —exp(—K1t*); % = kx"(1—2)™ (18)

where n lies between 1/2 and | and m between 0.774 and 0.556 corresponding to
intzger numbers of p = 2, 3. 4. For both mr and n = 1/2, the rate of reaction was found
to be proportional to the difference between interfaces of reacting solids3®. For
further reaction progress see Egns. (20) and (21).

c. Process is governed by nucleation followed by the bulk growth of nuclei
(Nucleation proceeds according to the exponential law, see Eqn. (18)).

A. Induction stage?-#1-43
T % - (19)
t

where p =4 and n = 3/4. This equation is also suitable for the description of the
linear rate of nuclei growth when the rate of nucleation is negligible3°.

B. Two-dimensional growth of nuclei’*? (Avrami equation)

—In(l—2) = Kr*; %3 = k(1 —2)(—In(1—2)*2 (20)
t

+7.8.43

C. Three-dimensional growth of nuclei (Avrami equation)

—In(i—2)= K1’ %‘ = k(1 —x)(—=In(1—2))*?3 2n
- t

D. Later stages (unimolecular decay law)*?

—In(1—=z) = Kt: %’-‘:k(x—z) 22)
4

or random nucleation with one nucleus on the individual particle!7-*2. This form of
the equation may also describe some cases of the decomposition and/or volatilization
of pure condensed phase systems in which the reaction occurs homogeneously3® and
without dilution of the reactant by reaction products.

[E- Interaction of nucleation frequency (for p>4 increasing and for 3<p<4
decreasing) and time*?

% = k(1 —a)(~In(1—2a))>—/? (23)
I

—In(1—2) = K1%;
where (p— 1)/p is between 2/3 and 3/4. For p = 0.63 this equation may also be used to
describe bimolecular reactions®®. Mathematically, this is the appropriate form of the
differential expressing Egns. (18) and (31).]



SOLID-STATE REACTIONS AT INCREASING TEMPERATURE 9

d. Process is controlled by nucleation followed by the linear growth of nuclei
7,44

A. Chain growth of nuclei including the possibility of their branching

= Kexp(—K'1); —?=k¢z (29)
1

. . . e} 3
(also explosive reactions where time has a large power, f = kz" for n > 1“'5"5")
H

B. Branching nuclei interacting during their growth”-*>

In * = Kt; ijz=k.:7z(l-—a:) 25
1—a dz

C. Later stages of A and B”*3

In

= Klogt; 3—1 = k"(1 —o)™ (26)
t

11—«

where n <1 and m> 1.

e. Diffusion-controlled reactions

A. One-dimensional transport process with constant diffusion coefficient (parabolic
law)32~-35

a*=Kt; — =kx 0X))

A similar equation, dx/dr = ka~", may also be valid for some cases of sintering where
0 < n < 1, or possibly in the form of Eqns. (30) and (31)°.

B. Two-dimensional transport process {e.g. for a cylinder with no volume change

during the reaction*®)
dz -1
-9z +a=K; = =k(-In(l-2) (28)
t
C. Three-dimensional transport process in 2 sphere* (Jander’s equation3?3%%7)
17342 ... dx o’ 1/3 —-1/3 -1
(1—-(1—-2)"")" = Kr; -d—=’~(1—1) (1—a) -1
t
= k(11— (~In(l—a))~’ (29)

*These integral cquations are difficult to simplify into a suitable differential form and thus an
approximation is necessary:

(A—a)~ 2 = 1 +(1/3)a+(@/18)a® +(21/162)x> + ......
In(l—ao) = —(@+({1/2)+1/D>+{jdD)a* + ...... )

Thermochim. Acta, 3 (1971) 1-12
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The Ginstling and Brounshtein equation?33-48.39

1—23a—(1—0)? = K1; f;it‘ — K=z =

=~ k(—In(1—ax)) ! (30)

[D. Growth of spherical particles during their precipitation determined by diffusion>®

and expressed by an approximate form of the differential equation3°
dx -
—In(1—2) = K1%; ol kx"(1 —x) (31)
4

where p = 3/2, 2, 5/2, 3 depending on interface reaction and particle size and geo-
metry>°. Some other authors give p a value below 0.5 in the diffusion region3.]

DISCUSSION

A consideration of all cases of the mechanisms mentioned above with regard to
the function f(x) in the differential Eqn (2) seems to indicate that it is possible to
express this function in a more analytical form (there has been no attempt to give a
complete enumeration). The most convenient approximation can be considered to be
as follows:

-‘:l—z= k(1 —x)’a"(—In(1—x)° (32)
t

thus rendering 2 proper combination of exponent-factors 7z, m and p and a mathe-
matical description of the majority of possible mechanisms.

If the relationship
(1-27'°—1)=B.(—In(1-2)

is assumed, it is possible to establish the tendency of B, . The value of B, was computed as a constant
using 5 terms of the series written above by means of IBM/360 for x from 0.1 (step 0.1) to 0.9

z 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
B 0.339 0.346 0.354 0.363 0.373 0.384 0396 0.409 0.423

The maximum deviation from the average value for B is about = 10%. This is quite suitable having
regard to the accuracy required for the experimental data and the activation cnergy. Thus the average
value of B (£20.376) may be included in the pre-exponential factor of k, see Eqns. (29) and (30). The
above series of B, may also be adopted in the actual evaluation.
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Combination of

n m p is suitable for:
O O O Phase boundary reaction (linear Egn. (14))
x O O Phase boundary reaction (Eqns. (15), {(16))
Unimolecular decay law (Eqn. (22))
O x O Nucleation (Egns. (17}, (19)), linear growth of nuclei (Eqn. (24)),

linear diffusion (Eqn. (27))
O O x Diffusion (Eqns. (28), (30))

Nucleation (Eqns. (18), (25)), latter stages of linear growth of
nuclei (Egns. (25), (26)), diffusion (Egn. (31))

x O x Growth of nuclei (Egns. (20), (21), (23)), diffusion (Eqn. (30))
O x x Unjustified as yet
Any complicated case, unjustified as yet

X
X
o]

X

This equation appears to be suitable for the algorithmization of the preliminary
estimation of the probable reaction mechanisins either when fitting experimental data
dx/dr and « into different combinations of two exponent factors of Eqn. (32) in order
to get a constant value for &, or by direct ccmputation of the combination of two
factors (e.g. by matrix evaluation). The suitability of such a treatment can be justified
only by the evaluation of known experimental data. This discussion touches only
upon theoretical points of view.

This procedure, however, cannot give the direct answer in the search for a true
reaction mechanism. The overlapping of the values of the exponent-factors, as well as
the expected difficulties with the numerical solution of Egn. (32) will provide only a
rough idea of a spectrum of possible reaction mechanisms. Therefore a comple-
mentary direct investigation of the process by means of X-ray diffraction and/or
microscopy becomes necessary. This should be included in all kinetic investigations.
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